高级检索+

低场新生儿脑部磁共振图像自动分割方法研究

Automatic segmentation methods for low-field neonatal brain magnetic resonance images

  • 摘要: 对于新生儿而言,低场磁共振成像技术是一种更安全、无创的检查技术。然而,这项技术生成的脑部磁共振图像存在对比度不足及图像层厚较大的问题,对其进行分割和分析具有一定的挑战性。在本文中提出了一种快速、准确的低场新生儿脑部磁共振图像自动分割方法,其中包括超分辨率重建、大脑提取和脑组织分割。首先,本文使用N4 偏置场校正和最大连通域方法进行数据预处理。其次,实施了一种基于SMORE 改进的深度学习方法,用于低场磁共振图像的超分辨率重建,改善了原始SMORE 单被试单模型的问题。再次,使用基于错分割损失函数的nnU-Net 自配置方法进行大脑提取任务,使得网络更关注错分割区域。最后,采用一种基于体素级对比学习损失的HyperDense-Net 方法进行脑组织分割,提升了网络对于组织边缘的分割能力。本文在低场0.35T 新生儿脑部磁共振图像上进行训练,在大脑提取任务中Dice 系数达到了0.9785,在脑组织分割任务中均值Dice 系数达到了0.9405。实验结果表明,本文提出的方法可以有效地提高低场新生儿脑部磁共振图像的分割精度。

     

    Abstract: Low-field magnetic resonance imaging (MRI) technology is a safe and non-invasive examination technique for neonates.However,the brain MRI images generated by this technique have the problems of insufficient contrast and large slice thickness,making segmentation and analysis challenging.In this paper,we propose a fast and accurate method for automatic segmentation of low-field neonate brain MRI images,which includes super-resolution reconstruction,brain extraction,and brain tissue segmentation.Firstly,we preprocess data using N4 bias field correction and the largest connected component method.Then,an improved SMORE-based deep learning method is implemented for super-resolution reconstruction of low-field MRI images,addressing the limitations of the original SMORE single-subject singlemodel.Next,we use the nnU-Net self-configuring method with a mis-segmentation loss function for brain extraction so that the network pays more attention to mis-segmentation regions.Finally,a HyperDense-Net method based on a voxel-level contrastive learning loss is adopted for brain tissue segmentation,which enhances the segmentation ability of the network for tissue edges.In this work,the training was carried out on low-field 0.35T magnetic resonance images of neonatal brains.A Dice coefficient of 0.9785 for the brain extraction task and an average Dice coefficient of 0.9405 for the brain tissue segmentation task are achieved.The experimental results demonstrate that the proposed method can effectively improve the segmentation accuracy of low-field magnetic resonance images of neonatal brains.

     

/

返回文章
返回