高级检索+

Dense-UNet:基于密集连接U-Net的创伤伤口图像分割

Dense-UNet: Trauma image segmentation based on densely connected U-Net

  • 摘要: 慢性伤口会严重的影响患者生活质量,并且病情容易恶化。为保证伤口图像分割的分割效果,提高基于图像的伤口分析能力,本文提出了一种基于密集连接的U-Net 模型用于创伤伤口分割。其中,在跳跃连接中应用密集连接机制,将不同阶段的编码器输出,通过密集连接机制汇聚至对应层的解码器中。在每一层的解码器中使用多视野特征自适应融合模块(MFAF),对每一层解码器的跳跃连接特征进行自适应融合。在临床公共数据集上验证了本文方法的有效性。对比实验结果表明,本文方法对创伤伤口分割的DSC、MIoU、HD95、Recall、Voe 及Rvd 结果分别为82.84%、74.06%、2.66%、85.10%、74.31%和73.12%。并且对于伤口边缘不清晰的情况,分割精度得到有效提升。

     

    Abstract: Chronic wounds not only seriously affect the quality of life of patients,but also prone to deterioration.To ensure the accuracy of wound image segmentation and improve the image-based wound analysis,a U-Net model based on dense connections is proposed for wound segmentation in this paper.The dense connection mechanism employs skip connections.The outputs of different stages in the encoder are aggregated to the decoder by the dense connection mechanism.Within each layer of the decoder,the Multi-view Feature Adaptive Fusion module (MFAF) is utilized to adaptively fuse the skip connection features from each layer.The effectiveness of the proposed method is validated on public clinical datasets.Comparative experimental results show that the DSC,MIoU,HD95,Recall,Voe and Rvd metrics of the proposed method for wound segmentation are 82.84%,74.06%,2.66%,85.10%,74.31% and 73.12%,respectively.Moreover,the segmentation accuracy is effectively improved for the cases with unclear wound edges.

     

/

返回文章
返回