高级检索+

基于改进YOLOv8 的草莓病害检测与分割系统设计

A strawberry disease detection and segmentation system based on improved YOLOv8

  • 摘要: 本文介绍了一种基于改进YOLOv8 的草莓病害检测与分割系统。 该系统旨在解决传统人工监测方式在草莓病害检测中的局限性, 通过深度学习技术提高检测的准确性和效率。 系统采用YOLOv8n-FasterNet 模型, 该模型具有较小的尺寸和较快的处理速度, 适合实时检测需求。 模型通过引入FasterNet 替代YOLOv8 的主干网络, 在保证精度的前提下显著提高了速度; 此外, 该系统还应用了Lion 优化器来提升模型的训练效率和训练精度。 实验结果表明, 在Kaggle 公开的草莓病害数据集上, 该系统在草莓病害检测与分割方面取得了显著效果, 模型的正确率可达0.969,mAP 约为0.932, 同时FPS 高达133, 满足实时检测需求。 该系统可应用于智能农业、 农业研究、农业保险、 农产品质量控制和农业教育等领域, 具有良好的应用前景和推广价值。

     

    Abstract: This study introduces a strawberry disease detection and segmentation system based on an improved YOLOv8 model. The system aims to address the limitations of traditional manual monitoring methods in strawberry disease detection by leveraging deep learning technology to enhance detection accuracy and efficiency. We employ YOLOv8 n-FasterNet, a lightweight and high-speed variant of YOLOv8 optimized for real-time applications. By replacing the backbone of YOLOv8 with FasterNet, the model achieves significantly faster speed while maintaining accuracy. Additionally, we apply the Lion optimizer to enhance training efficiency and model performance. Experimental results show that the system achieves remarkable performance in strawberry disease detection and segmentation on the publicly available Kaggle strawberry disease dataset, with an accuracy of 0.969, a mAP of ~0.932, and an FPS of 133, fulfilling real-time detection demands. Given its strong performance, the system has great potential for smart agriculture,agricultural research,agricultural insurance,agricultural product quality control,and agricultural education, offering promising prospects for practical implementation and broad adoption.

     

/

返回文章
返回