高级检索+

基于多模态贝叶斯决策融合的帕金森病预测模型研究

A multimodal Bayesian decision fusion model for Parkinson's disease prediction

  • 摘要: 帕金森病的早期症状具有跨模态异质性(如微表情震颤、 语音畸变等), 传统基于单模态智能诊断的方法难以全面捕捉病理特征。 同时, 现有的多模态融合策略因静态权重分配与特征流形畸变问题, 难以实现噪声场景下的可靠决策。 针对上述问题, 本文提出一种基于多模态贝叶斯决策融合的方法(Multimodal Bayesian Decision Fusion, MBDF), 通过核密度估计与贝叶斯推理构建动态置信度评估模块, 实现模态权重的自适应分配。 此外, 该方法设计了基于均值-方差统计特性的特征稳定性优化模块, 以抑制高维噪声干扰。 实验结果表明, 所提方法有效验证了双模块的协同效应, 显著提升了复杂场景下的诊断鲁棒性, 为神经退行性疾病的智能诊断提供了可扩展的多模态融合范式。

     

    Abstract: The early symptoms of Parkinson's disease exhibit cross-modal heterogeneity (e.g., microexpression tremors, speech distortion), making it difficult for traditional unimodal intelligent diagnostic methods to comprehensively capture pathological features. Moreover, existing multimodal fusion strategies face challenges in achieving reliable decision-making in noisy environments due to static weight allocation and feature manifold distortion. To address these challenges, this paper proposes a Multimodal Bayesian Decision Fusion (MBDF) method. The method constructs a dynamic confidence evaluation module using kernel density estimation and Bayesian inference, enabling adaptive weight allocation for different modalities. In addition, a feature stability optimization module based on mean-variance statistical properties is designed to suppress high-dimensional noise interference. Experimental results demonstrate the effective synergy between the two modules, significantly enhancing diagnostic robustness in complex scenarios. The proposed method provides a scalable multimodal fusion paradigm for intelligent diagnosis of neurodegenerative diseases.

     

/

返回文章
返回