高级检索+

基于加权全变差型L1/L2 正则化的有限角CT 图像重建

Limited-Angle CT image reconstruction based on weighted total variation-type L1/L2 regularization

  • 摘要: 目的 本文旨在利用L1/L2 正则化描述数据稀疏性的能力, 建立新型的CT 重建模型,改进重建图像质量。 方法 在基于全变差泛函空间的L1/L2 模型中引入权重矩阵, 增强模型描述图像结构特征的能力。 由于模型是非凸优化和非光滑的, 通过引入辅助变量并在增广拉格朗日方法的框架下, 将其转化为多个易求解的子问题并利用交替方向法求解。 结论 与传统的正则化方法相比, 本文所提出的模型能够有效地改善带高斯噪声, 尤其是高强度噪声水平的有限角度数据下, 图像的重建质量更优。

     

    Abstract: Objective This paper proposes a novel CT reconstruction model by leveraging the sparsityinducing property of L1/L2 regularization to enhance image quality. Methods A weighted matrix is incorporated into the L1/L2 total variation functional space to improve structural feature representation. To address the nonconvex and nonsmooth optimization challenges inherent in the model, an augmented Lagrangian framework with auxiliary variables is introduced, which enables decomposition into tractable subproblems that are iteratively solved via the alternating direction method. Conclusions Compared with conventional regularization approaches, the proposed weighted L1/L2 model demonstrates superior performance in limited-angle projection image reconstruction, particularly under severe Gaussian noise conditions, achieving enhanced reconstruction accuracy and artifact suppression.

     

/

返回文章
返回