高级检索+

基于深度字典学习的CT 图像金属伪影去除算法

A deep dictionary learning algorithm for CT metal artifact reduction

  • 摘要: 本文提出了一种基于深度学习的金属伪影去除方法(DRDNet), 通过结合字典学习和深度展开技术, 有效解决了CT 图像中的金属伪影问题。 假设该方法受金属伪影影响的图像可分解为无伪影的纯净图像和金属伪影模板图像, 并利用多阶段神经网络迭代优化分解过程。 FNet 提取金属伪影特征, TNet 生成无伪影图像。 通过复合损失函数(L1 Loss 和Edge Loss), 在去除伪影的同时保留图像细节。 实验在SynDeepLesion 数据集上进行, 结果表明, DRDNet 在PSNR 和SSIM指标上优于现有方法, 且在不同尺寸、 形状的金属掩模下表现出更强的伪影去除效果。关键词: 深度学习; 字典学习; 金属伪影去除; CT 图像中图分类号: R 814; TP 391.41 文献标识码: A

     

    Abstract: This paper proposes a deep learning-based metal artifact reduction method (DRDNet), which effectively suppresses metal artifacts in CT images by combining dictionary learning and deep unfolding techniques. The proposed method assumes that images affected by metal artifacts can be decomposed into artifact-free components and metal artifact template. A multi-stage neural network is employed to iteratively optimize the decomposition process. Specifically, FNet extracts metal artifact features, while TNet generates artifact-free images. By incorporating a composite loss function (combining L1 Loss and Edge Loss), the method preserves structural details while removing artifacts. Experiments conducted on the SynDeepLesion dataset demonstrate that DRDNet outperforms existing methods in terms of both PSNR and SSIM metrics. Moreover, it exhibits superior artifact reduction performance across metal masks of varying sizes and shapes.

     

/

返回文章
返回