高级检索+

基于无监督学习的工业图像异常检测研究综述

A review of industrial image anomaly detection based on unsupervised deep learning

  • 摘要: 图像异常检测与定位任务旨在识别异常图像并定位异常区域。 工业图像异常的检测在工业生产和制造领域具有重要的研究意义。 随着深度学习技术的不断进步和应用, 工业图像异常的检测效果有望得到显著提升。 传统的异常样本检测主要依赖于监督学习方法, 必须要求准备充分的缺陷样本数据以供训练, 并且这些样本需要进行精确的标注。 而在工业场景中, 异常样本往往稀少, 其表现形式从细微变化到显著结构缺陷不等, 可用于训练的缺陷样本数量极为有限, 异常检测和定位面临极大挑战。 相较之下, 无监督异常检测算法能够在无需任何标注样本的情况下构建检测模型, 模型可通过分析正常数据的信息和特征, 实现高精度的异常检测。 本文首先介绍了异常的定义及其在工业场景中的广泛应用, 探讨了异常检测和定位在工业场景中面临的挑战, 包括数据稀缺性和异常表征的多样性。 随后, 详细分析了几种典型无监督学习框架。 例如, 教师-学生网络、 特征内存存储库、 生成网络和大规模视觉语言模型等在工业异常检测中的发展和应用。 并且, 本文汇总了当前流行的工业异常检测数据集和评价指标, 供同行在研究算法时参考。最后, 本文对当前的深度学习方法进行了总结, 并分析了未来值得关注的研究方向, 以期能更好地应对挑战并推动其实践应用。

     

    Abstract: Image anomaly detection and localization aim to identify and locate anomalies. Industrial image anomaly detection is of significant research importance for its value in enhancing quality control and automation in industrial production. With the rapid advancement and application of deep learning technologies, substantial progress is anticipated in this field. Traditional anomaly detection methods mainly rely on supervised learning, which requires a large number of defect samples with accurate annotations for training. However, in real-world industrial scenarios, anomalous samples are often scarce and may exhibit diverse features ranging from subtle imperfections (e.g., minor scratches) to major structural defects (e.g., missing parts or components). This poses big challenges to anomaly detection and localization. In contrast,unsupervised anomaly detection algorithms can establish a detection model without any labeled sample. Through the analysis of information and characteristics inherent to normal data, the model is able to accurately detect anomalies. In this review, we start with introducing the concept of anomalies and their wide application in industrial scenarios, and discuss the challenges in anomaly detection and localization, including data scarcity and the heterogeneity of anomaly presentations. Then, we provide an comprehensive analysis of various unsupervised learning frameworks, such as teacher-student networks,feature memory repositories, generative networks, and large-scale visual language models, along with their evolution and development in industrial anomaly detection. Moreover, we list popular datasets and evaluation metrics currently used in industrial anomaly detection as reference for researchers. Finally, we summarize existing deep learning methodologies and envisions future research directions to address current challenges and advance practical applications.

     

/

返回文章
返回