高级检索+

基于选择性大核和空间关系的文本检测方法

Text detection with selective large-kernel and spatial relation

  • 摘要: 基于分割的文本检测方法可以准确的定位到任意形状的文本区域,但目前基于分割的任意形状文本检测方法有两个需要解决的问题:①准确检测图像中的文本需要更加广泛的背景信息,不同形状的文本所需的上下文信息不同;②现存方法往往没有结合上下文特征,没有充分利用各个尺度特征,从而忽略了各个阶段特征图之间的联系。针对上述问题,本文提出了一种任意形状场景文本检测方法LSRNet,在该网络中设计选择性大核网络,通过动态调整感受野,更有效地处理了不同形状文本所需背景信息差异,还在增加感受野的同时减少了模型参数量的增加;此外,还提出一种利用上下文特征的空间关系网络,充分利用不同阶段特征图之间的联系。在公开数据集上进行的实验表明,本文提出的方法在任意形状的文本检测方面都取得了良好的性能。

     

    Abstract: Segmentation-based text detection methods can accurately locate arbitrary-shaped text regions. However, there are two problems to be solved in the current segmentation-based arbitrary-shaped text detection methods:Accurate text detection in images requires extensive background information, and text of different shapes require very different contextual information; Existing methods often fail to incorporate contextual features and fully leverage the features of all scales, thereby ignoring the relationships between feature maps at different stages. Aiming at these problems, this paper proposes an arbitrary-shaped scene text detection method LSRNet. In this network, a selective large-kernel network module is designed to effectively deal with the variation in background information requirement for different text shapes by dynamically adjusting the receptive field, and the receptive field is increased with minimal additional parameters. In addition, a spatial relationship network module using contextual features is proposed to make full use of the connections between feature maps at different stages. Experiments conducted on public datasets show that the proposed method achieves good performance in arbitrary-shaped text detection.

     

/

返回文章
返回