高级检索+

跨维度特征增强Former: 面向X-ray肺炎的计算机辅助诊断

Cross-dimension feature-enhancement former: A Computer-aided diagnosis system for pneumonia in X-ray images

  • 摘要: 目的 基于深度学习的肺炎计算机辅助诊断是一个研究热点,但在提取肺部X-ray图像病灶特征时,存在病灶特征位置提取不充分,不能有效聚焦病变区域的问题。方法 本文针对上述问题提出一种跨维度特征增强Former,用于X-ray肺炎的计算机辅助诊断,主要创新点如下:第一,针对病灶的位置信息提取不充分的问题,设计跨维度位置感知模块,有效提取肺部X射线图像的空间信息和通道信息;第二,针对不能有效的聚焦于病变区域的问题,设计局部-全局Former模块,采用空间窗口注意力和通道分组注意力并行的方式,使网络更有效地聚焦于病变区域。结果 为验证本文模型的有效性,在两个肺部X射线图像数据集上进行对比实验,结果表明,本文提出的模型在数据集1上的准确率、F1值、召回率、精确率和特异性分别为97.48%、95.14%、95.15%、95.12%和98.37%,在数据集2上的准确率、F1值、召回率、精确率和特异性分别为97.14%、95.13%、95.46%、95.22%和97.37%。结论 本文所提出的跨维度特征增强Former有效提高了肺炎图像识别精度,对计算机辅助诊断具有重要的临床参考意义。

     

    Abstract: Objective Computer-Aided Diagnosis of pneumonia based on deep learning is a major research focus. However, during featureextraction, the positionalfeatures of lesions are often not sufficiently captured, making it difficult to effectively focus on affected regions. Method To address the above problems, this paper proposes a Cross-Dimensional Feature-Enhancement Former(CDFEF) for the computer -aided diagnosis of pneumonia from X-ray images. The main contributions are as follows:Firstly, a Cross -Dimension Location-Aware Module(CDLAM) is designed to effectivelyextract space and channel-wise information. Secondly, aLocal-Global Former Module(LGFM) is designed to enable the network focus more effectivelyon diseased regionsby using a parallel architecture of spatial window attention and channel grouped attention. Result In order to verify the effectiveness of the proposed model, comparative experiments are conducted on two chest X-ray datasets. The results show that the accuracy, F1 value, recall rate, accuracy and specificity of the proposed model on Dataset 1 are 97. 48%, 95. 14%, 95. 15%, 95. 12% and 98. 37%, respectively. The accuracy, F1 value, recall rate, accuracy and specificity on Dataset 2 are 97. 14%, 95. 13%, 95. 46%, 95. 22% and 97. 37%, respectively. Conclusion The CrossDimension Feature-Enhancement Former proposed in this paper can effectively improve the accuracy of pneumoniaidentification in chest X-ray images, which holds important clinical relevance for Computer-Aided Diagnosis.

     

/

返回文章
返回